m ABTOoMaTH3allid Ta KOMII'IOTE€PHO-IHTETPOBaHi TEXHOAOT1

YK 004.942:656.61.052

COLLECTIVE CYBERSECURITY OF AUTONOMOUS MARITIME
VESSELS BASED ON DECENTRALIZED INTELLIGENT ANALYSIS

Kozachok Y., graduate student, Kherson State Maritime Academy, Ukraine,
e-mail: kozak9995@gmail.com, ORCID: 0009-0005-6430-3961;

Simanenkov A., Ph.D., Associate Professor, Ship Electrical Equipment and Automation
Appliances Exploitation Department, Kherson State Maritime Academy, Ukraine,
e-mail: Simanenkov.andrii@gmail.com, ORCID: 0000-0003-0797-527600:54;

Zinchenko S., Sc.D., Associate Professor, Ship Handling Department, Kherson State
Maritime Academy, Ukraine, e-mail: srz56@ukr.net, ORCID: 0000-0001-5012-5029.

This paper presents a comprehensive approach to enhancing the collective cybersecurity of autonomous
maritime platforms through the integration of intelligent data analysis methods, decentralized coordination
mechanisms, and a custom hybrid architecture that combines Long Short-Term Memory (LSTM) neural
networks with onboard large language models (LLMs). The core innovation lies in augmenting traditional
LSTM-based anomaly detection with LLM-driven semantic interpretation of navigational inconsistencies — a
fundamentally novel strategy for self-governing maritime environments.

Particular attention is paid to the detection, explanation, and decentralized coordination of responses to
Global Positioning System (GPS) spoofing attacks, which pose a significant threat to navigational accuracy,
operational safety, and the overall coherence of fleet activities. The proposed system, built on a proprietary
LSTM-LLM configuration, equips each vessel with multi-level cognitive capabilities: real-time anomaly
detection, natural language generation of contextual explanations, and autonomous formulation of strategic
responses without dependence on centralized oversight or communication infrastructure.

Unlike conventional centralized solutions, the system empowers each vessel to independently analyze
situational data, derive human-understandable contextual insights, and adapt its behavior accordingly. The
architecture includes a lightweight protocol for structured message exchange in JavaScript Object Notation
(JSON) format, enabling efficient, resilient, and secure inter-vessel communication. Additionally, a
decentralized consensus mechanism, based on a dynamically updated trust matrix, enhances the fleet’s
robustness against partial compromise and improves operational integrity.

The effectiveness of the proposed approach is demonstrated through a simulated GPS spoofing scenario
involving one compromised vessel within a five-vessel fleet. The results confirm the system’s ability to detect
anomalies accurately, isolate the compromised unit, and successfully adapt the navigational strategies of the
remaining vessels — thus maintaining uninterrupted mission continuity despite active cyber disruption.
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Introduction. The active development of autonomous maritime transport creates new
opportunities for improving the efficiency, safety, and economy of maritime transportation. Modern
autonomous vessels increasingly rely on navigation, communication, and computational systems
that function without direct human intervention. Under these conditions, ensuring cybersecurity
becomes a critical issue, both for individual platforms and for entire fleets.

Modern autonomous vessels heavily rely on complex navigation, communication, and
computational systems that must operate reliably without direct human intervention. These systems
process vast amounts of real-time data, including Global Positioning System (GPS) signals,
Automatic Identification System (AIS) broadcasts, inertial navigation system (INS) inputs, and
environmental sensor data. A disruption or manipulation of this information can critically impact a
vessel’s decision-making processes, making cybersecurity not merely a technical concern but a
foundational requirement for safe and efficient operations.

One of the most dangerous threats is GPS spoofing attacks, where an attacker falsifies global
positioning signals, causing the vessel to incorrectly determine its own location. In multi-vessel
(collective) missions, where movement coordination relies on shared routes, even a single attack
can have critical consequences for the entire fleet, including collisions, loss of orientation, mission
disruptions, and more.
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In response to these challenges, this article proposes a hybrid system for collective response
to cyber threats, combining:

— Neural network models for anomaly detection in navigation data;

— Large Language Models (LLM), particularly Ollama, serving as situational interpreters
and strategic decision generators onboard;

— Mechanisms for decentralized interaction between vessels, allowing coordinated responses
to attacks without a centralized control point.

The proposed system enables an autonomous vessel not only to detect its own vulnerabilities
but also to inform other fleet participants, initiate consistency checks for coordinates, receive
recommendations from local artificial Intelligence (AI) assistants, and adjust the collective
trajectory. Thus, it ensures collective cyber resilience capable of adapting to dynamic threats in real-
time.

Analysis of Recent Research and Publications. With the increasing level of automation in
vessel navigation, autonomous vessels become more vulnerable to cyber threats. Cyberattacks on
autonomous maritime vessels can vary in nature and impact vectors, affecting navigation, sensors,
communication, and software components. One of the most dangerous types of attacks is GPS
spoofing, in which an attacker alters the coordinates perceived by the vessel, misleading it about its
actual location [1]. Another common threat is GPS jamming, which can lead to a complete loss of
navigation capability. Similarly, the AIS, responsible for information exchange between vessels,
can also be spoofed. Furthermore, interference with the INS is possible, leading to accumulated
errors in coordinate determination over time.

These threats can disrupt navigation systems, creating significant safety risks. Research [2]
highlights that cyberattacks can result in loss of vessel control, physical damage, and navigational
system disruptions.

Resource [3] describes a new type of Distributed Denial of Service (DDoS) attack, the
largest in history, which resulted in a 30-minute outage affecting 15% of global internet services
and several major providers, significantly impacting maritime systems as well. Special attention
should be given to the vulnerability of satellite navigation systems. Work [4] emphasizes the
necessity of enhanced protection against cyberattacks for maritime systems, especially when
combined with terrestrial components of advanced long-range navigation systems.

Among contemporary approaches for detecting anomalies in navigational data, neural
network models such as Long Short-Term Memory (LSTM) show promise. Specifically, study [5]
demonstrates the effectiveness of the LSTM encoder-decoder algorithm in identifying deviations in
Automatic Dependent Surveillance—Broadcast message sequences within air transportation. The
proposed method autonomously models expected object behavior and detects discrepancies, an
approach equally applicable to GPS spoofing detection in maritime environments. Despite the
aviation focus of the research, its principles can directly transfer to tasks involving the safe
navigation of autonomous vessels in open waters.

Recently, the Ollama platform has attracted researchers' attention due to its ability to locally
deploy LLM, even in resource-constrained environments. Work [6] analyzed the performance of 28
quantized Ollama models deployed on Raspberry Pi devices, evaluating energy consumption,
accuracy, and inference latency. Results demonstrate that local LLMs can effectively handle real-
time tasks on autonomous devices. In an industry-specific context, research [7] explored using
Ollama to develop PDF bots capable of efficiently processing technically complex documents. The
authors underline the importance of adapting Retrieval-Augmented Generation (RAG) architectures
to domain-specific requirements, particularly relevant to maritime contexts with extensive
regulatory data, routing charts, and instructions.

The integration of LLMs, such as Ollama, into autonomous vessel systems opens new
possibilities for interpreting and explaining detected threats. LLMs can provide -clear
recommendations to crew members or automated systems regarding further actions upon detecting
anomalies caused by cyberattacks. Research [5] underscores LLMs' potential for contextual
understanding and response generation, enhancing cybersecurity systems' effectiveness.
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Analysis of current research [8—11] indicates that effective cybersecurity in autonomous
maritime navigation requires a comprehensive approach, encompassing anomaly detection,
decentralized coordination, and intelligent systems for threat interpretation. Integrating large
language models into these systems can significantly improve their effectiveness and adaptability to
emerging challenges.

Purpose and Objectives of the Research. The purpose of the research is to develop and
experimentally verify a hybrid intelligent system for detecting and collectively responding to
cyberattacks (particularly GPS spoofing) within a network of autonomous maritime vessels,
utilizing a local language assistant based on an Ollama, which ensures decentralized adaptation and
cybersecurity resilience of the fleet.

Main Section. Within the framework of this research, a hybrid cybersecurity system is
proposed, combining anomaly detection in navigational data using neural network models [12—16]
with LLM for interpreting and explaining threats, as well as forming context-dependent actions. A
critical aspect of the system is its distributed nature, enabling autonomous vessels to exchange risk
assessments and coordinate collective responses without centralized management.

The system comprises the following functional modules:

— Anomaly Detection Module: Built on an LSTM network trained on normal GPS/AIS
coordinate behavior to forecast subsequent values. Deviations from actual values indicate potential
attacks. LSTM networks represent a special class of recurrent neural networks (RNNs) specifically
designed to learn and model temporal sequences and long-range dependencies. Unlike traditional
RNNSs, which often suffer from the vanishing gradient problem, LSTM networks utilize a gated cell
structure that enables them to retain information over extended periods of time. Each LSTM cell
incorporates input, output, and forget gates, allowing the network to dynamically control which
information is stored, updated, or discarded. This architecture makes LSTM models particularly
effective in tasks involving sequential data analysis, such as time series prediction, natural language
processing, and anomaly detection. In the context of autonomous maritime systems, LSTM
networks are widely employed for detecting anomalies in navigation data, predicting vessel
trajectories, and enhancing situational awareness by modeling complex temporal patterns.

— Language Model: Implemented via the local Ollama platform which are advanced Al
systems built upon large-scale transformer-based architectures capable of understanding,
generating, and reasoning over human language with high contextual awareness. These assistants
leverage pre-trained deep learning models, often containing billions of parameters, fine-tuned to
perform a wide range of tasks, including question answering, decision support, summarization, and
real-time information retrieval. Due to their ability to process complex queries and generate
contextually relevant responses, LLM Assistants are increasingly integrated into autonomous
systems to enhance their decision-making capabilities. In autonomous maritime platforms, LLM-
based assistants can provide real-time situation analysis, interpret anomalous sensor data, and
support the coordination of collective behavior among multiple vessels, offering a significant
improvement in operational autonomy and cyber-resilience.

— Inter-Vessel Communication Module: Implemented through a lightweight JavaScript
Object Notation (JSON) protocol (via Transmission Control Protocol/User Datagram Protocol), it
enables the dissemination of threat alerts (including coordinates, timestamps, IDs, and
recommendations).

— Collective Decision Mechanism: Each vessel performs a local verification of the attacked
node's coordinates, assesses trust levels, consults its own LLM assistant, and subsequently adjusts
its trajectory according to the new coordination strategy.

The system features a three-level structure (Fig. 1):

1. Sensory Level — Acquisition of GPS, AIS and INS data;

2. Analytical Level — Anomaly detection, LLM initiation for explanations;

3. Coordination Level — Dissemination of decisions, creation of new routes.
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Figure 1 — Overview of the Decentralized Three-Layer Architecture Used in the Al Module

The proposed method for detecting anomalies in navigational data is based on the use of a
LSTM network combined with a LLM assistant for explanation and decision support. A sliding
window approach is used, where a fixed-length sequence of recent GPS coordinates is continuously
processed. The LSTM model is trained on normal (non-spoofed) GPS sequences to predict the next
expected position based on the historical input sequence.

During real-time operation, the system receives new GPS data points and updates the latest
sequence accordingly. The LSTM model predicts the next expected coordinate, and the predicted
value is compared to the actual received value using the Haversine distance formula, which
measures the geographical distance between two points on the Earth's surface. If the calculated error
exceeds a predefined threshold the system flags an anomaly.

When an anomaly is detected, the onboard LLM assistant is triggered to generate a
contextual explanation of the incident and recommend appropriate actions. Additionally, an incident
alert is broadcast to other vessels in the fleet, allowing the collective to respond in a coordinated
manner. This hybrid LSTM-LLM approach ensures real-time anomaly detection with autonomous
situational assessment and collaborative fleet behavior adjustment without reliance on centralized
systems. The LSTM model is illustrated using pseudocode in Fig. 2.

The methodology is highly adaptable and scalable, as the LSTM model can be retrained for
different vessel types, operational scenarios, or navigational environments. Moreover, by relying on
learned sequential patterns rather than static thresholds, the system significantly reduces the
occurrence of false positives caused by typical navigational noise. Finally, the architecture is
designed with efficiency in mind: both LSTM networks and locally deployed, quantized LLMs can
operate effectively on modern edge computing hardware, ensuring that real-time processing
requirements are met without excessive energy consumption.
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SequencelLength = number of points in the window (e.g., 18)
GPS_Data = list of coordinates [(lat:, lon:), (latz, lonz), ..., (lat.,, lon,)]
Threshold = acceptable error threshold (e.g., 30 meters)

Train LSTM_Model on normal (non-spoofed) sequences:
for each i in (1, len(GPS5_Data) - Sequencelength):
InputSequence = GPS_Datali : i + Sequencelengthl
Target = GPS_Datali + SequencelLength]
Train model to predict Target from InputSequence

Function Detect_Anomaly(Latest_Sequence):
Predicted = LSTM_Model.predict(Latest_Sequence)
Actual = GPS_Data[-1] # last observed value
Error = Haversine_Distance(Predicted, Actual)

if Error = Threshold:
return "ANOMALY", Error
else:
return "NORMAL", Error

Loop:
Continuously receive new GPS point
Update Latest_Sequence with sliding window
Status, Error = Detect_Anomaly(Latest_Sequence)

if Status == "ANOMALY":
Trigger AI Assistant (LLM) for explanation and recommendation
Broadcast incident to fleet J

Figure 2 — Pseudocode of LSTM Algorithm for Anomaly Detection

Let us consider a fleet F = {Si, S, ..., Su} of autonomous vessels operating in a distributed
environment and interacting with each other through communication channels with limited latency.
The input parameters include the coordinates of vessel SiS_iSi at time ttt and the magnitude of its
positional change.

pi(t) = (lat(t),loni(t)) € R?; (1)

Api()) = |Ipi(®) — pi(t — 89|, )

where pi(t) — the coordinates of the vessel at a given point in time, Ap;(t) — the magnitude of
movement Vessel Sy registers a potential deviation if:

MSE (5, (0,2:(0)) > T 3)

where py(t) — the coordinate prediction from the LSTM model, T — the threshold value of the
reconstruction error, MSE (Mean Squared Error) — the mean squared error
Vessel Sk generates a message:
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Ax = (& Sw pr(t), Api(t), recLLM(Sy, 1)), 4)

where recLLM is a recommendation generated by the local LLM assistant based on the Ollama
platform. The message Ay is broadcast to Sj. Each vessel S; calculates the relative discrepancy:

di(® = [Ip;(® — px®II, (5)

and determines the trust in the coordinates Sy:

() = {0, if d(t) >n ©

where 1 — the allowable inter-vessel error (GPS drift margin).
The vessels construct a trust matrix:

M@ = [nx(D]j € F\ {k. (7)

Final trust:
1
e (O = — X (O. (®)

If pe(t)<0,me0€[0,1] — a threshold value (e.g., 0.5), then S, is considered
compromised. The fleet transitions to a new state Sj € F' and performs local trajectory optimization
vj(t) taking into account the exclusion of the compromised node:

v';(©) = Optimize(y;j(t) | S, €/Nj(1), )

where Nj(t) — a set of neighboring vessels for coordinated navigation.

This approach ensures decentralized fleet resilience against GPS spoofing attacks, enabling
autonomous agents to respond independently yet coordinately. The experimental part of this study
aims to validate the functionality of the proposed collective cybersecurity system for autonomous
vessels, integrating local detection of navigation anomalies, explanatory capabilities of the LLM
language model, and decentralized fleet interaction under GPS spoofing conditions.

The experiment sought to confirm the LSTM model's capability to detect anomalous
coordinate changes in real-time, assess the responsiveness and quality of explanations provided by
the local Al-assistant (Ollama), verify the correctness of collective fleet decision-making during a
simulated attack on one of the vessels, and evaluate the overall resilience of the system against
partial disruption of coordinated navigation control.

The following software was used to model the system:

— OpenCPN — as a visualization platform for autonomous fleet navigation;

— gps-sdr-sim — to generate fake GPS signals using pre-prepared NMEA sequences;

— Python — an environment for processing coordinates and implementing the LSTM-based
anomaly detection model,

— TensorFlow/Keras — for constructing and training the neural network model;

— Ollama — a local platform for running the LLM;

— Docker — for containerizing each vessel as a separate node with a network API;

— JSON communication — for exchanging incident information and coordinates between
vessels.

The simulation modeled a fleet of five autonomous vessels S= {S1, S2, S3, S4, S5}, initially
following identical routes in a parallel formation at a speed of 10 knots. The attack scenario
included:

— At t=120 seconds, vessel S3 was subjected to a GPS spoofing attack, shifting coordinates
by 70-90 meters within 2 seconds;
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— The LSTM model was trained on 10,000 normal observations (without anomalies);
— Each vessel is equipped with a local LLM-assistant using the Ollama API, which receives
incident data structured as JSON (Fig. 3).

{
"yessel id": "S3",
"timestamp": "2025-04-12T14:36:00Z",
"coordinates": [48.4650, 35.8455],
"mse error": @.0037,
"recommendation": "Switch to INS and notify fleet"
}

Figure 3 — communication API with LLM

Upon receiving the message, other vessels compare their coordinates with S3, assess the
trust level, consult their local LLM-assistants to generate recommendations, and collectively
exclude vessel S3 from the coordination matrix.

Main Results and Discussion. To evaluate the results, the following metrics are utilized:

— MSE - widely used to measure prediction accuracy or data reconstruction in machine
learning, particularly in regression and anomaly detection tasks;

— LLM response time — the duration taken by the language model to respond to queries;

— Correctness of collective decision-making — evaluating whether the fleet’s collective
response to the threat was appropriate;

— Time To Detect (TTD) — the interval from the attack's initiation to its detection (Fig. 4).

0.005 MSE during GPS Spoofing Attack and Time To Detect (TTD)
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Figure 4 — MSE detection visualization
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The experimental simulation results demonstrate that the system can promptly detect GPS
spoofing attacks with an average detection delay of 1,8 seconds after the anomaly begins. The
developed LSTM model provided high detection accuracy, achieving precision = 0,97 and recall =
0,94, confirming its ability to identify coordinate deviations even under minor external
disturbances.

The local Al assistant based on the Mistral model deployed via the Ollama platform
generated situational explanations in approximately 0,8 seconds on average, allowing its real-time
use. In 100% of the simulation runs, the system correctly identified which vessel was compromised,
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and all other fleet participants successfully excluded it from collective coordination, adapting their
routes according to the new fleet configuration.

These findings confirm that the proposed system can swiftly and reliably detect coordinate
anomalies related to GPS spoofing, generate meaningful and practical recommendations using a
local Al assistant, and ensure stable collective response among autonomous vessels without the
need for centralized control. Thus, the approach ensures functional cyber-resilience of the fleet,
even when one of its elements is compromised.

The hybrid system's advantages demonstrate high efficiency under realistic GPS spoofing
attack scenarios. Key advantages of the system include

— Decentralization: The system requires no centralized control or server; each vessel
autonomously detects anomalies and generates recommendations.

— Intelligent Explanation: Through local deployment of LLM models, each agent can
articulate the causes of incidents and suggest actions understandable both by humans and other
software.

— Resilience to Partial Fleet Disruption: Even if one fleet participant is compromised, the
collective behavior system maintains adaptability.

— Scalability: The architecture enables adding new vessels without modifying interaction
principles.

Despite the successful results, the system has certain limitations:

— Model Quality Determines Reliability: An improperly trained LSTM model may fail to
detect anomalies or produce false positives.

— Resource Requirements: Running the local LLM assistant demands adequate
computational resources, particularly CPU and RAM.

— LLM Security: Language models can be susceptible to prompt injection or may generate
ambiguous instructions under complex conditions.

— Network Reliability: Loss of communication between vessels could disrupt the collective
coordinate verification mechanism.

— The current evaluation involved a relatively small group of vessels. To ensure robustness
and scalability, the system should be validated in larger fleets and more diverse maritime
environments.

Conclusions. This study introduces a cybersecurity architecture for autonomous maritime
vessels that integrates real-time anomaly detection in navigational data, interpretative capabilities of
a locally deployed Al assistant based on a LLM, and decentralized coordination mechanisms among
fleet units. The system was evaluated in a simulated GPS spoofing scenario involving a five-vessel
autonomous group.

Compared to traditional centralized methods, the proposed solution offers significant
advantages in autonomy, scalability, explainability of decisions, and rapid situational response.
These attributes make the system a strong candidate for integration into next-generation maritime
platforms - including unmanned patrol, cargo, and oceanographic research vessels — where
resilience and independence are mission-critical.

Prospects for Further Research. Future directions for research and enhancement of the
proposed system may include:

— Multimodal Attack Detection: combining GPS, INS, AIS, and other sensor data into a
unified anomaly detection model.

— Contextual Training of the LLM Assistant: adapting responses based on vessel type,
mission objectives, and weather conditions.

— Model Optimization for Onboard Platforms: using lightweight models (such as
Gemma2B) capable of operating on edge devices.

— Agent Voting Mechanisms: instead of simply excluding a compromised node,
implementing opinion consensus algorithms (e.g., weighted consensus-based approaches).
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Ko3zauok 10., CimanenkoB A., 3inuenko C. KOJIEKTHMBHA KIBEPBE3IIEKA ABTOHOMHUX
MOPCBKUX CYZAEH HA OCHOBI JJEHEHTPAJII30OBAHOT'O IHTEJIEKTYAJIBHOI'O AHAJII3Y

YV oaniti cmammi npedcmasneno nioxio 0o 3abe3neuents KOJEeKMUGHoI Kibepbe3neku asmoHOMHUX MOPCLKUX
naameopm wisxom inmeepayii Memooie IHmMeneKmyaibHo20 ananizy OaHuUX, OeyeHmpanizo8anoi Koopounayii
ma eiacHoi 2iopuonoi apximexmypu, wo noeonye Long Short-Term Memory (LSTM) 3 1okanvho 66y006anoio
senukoio Moenor moodewno (LLM). Ocnosna innosayis nonseae y oonoenenni mpaouyitinoi LSTM-mooeni
Komnonenmom LLM — 3 memoio e nuwie uAgneHHA, ale U CeMAHMUYHO20 [HMepnpemy8anHs AHOMANil )
HAGI2aYitIHUX OAHUX, WO € NPUHYUNOBO HOBUM NIOX0O0OM OJisi ABMOHOMHO20 MOPCLKO20 CEPEOOsULyd.

Ocobnusa ysaza npudiisgemvcs GUAGLEHHIO, NOSCHEHHIO MA 0eYeHMpPani308aHitl KOopouHayii peazyeants Ha
amaku muny GPS-cnygine, ski cmanosisimos cymmegy 3azpo3y mOoYHOCmI Hasieayii ma 31a200%4ceHocmi i
ABMOHOMHUX hromis. 3anponoHo8ana cucmema, 3acHo8ana Ha éaracuiu moougixayii LSTM-LLM, 3abe3neuye
cyoHam 6acamopienegy KOZSHIMUGHY 30AMHICMb: 6UAGIEHHS GIOXUIEHb Y DPealbHOMY 4dcl, 2eHepayiro
KOHMEKCMYalbHUX NOACHEHb NPUPOOHOI0 MOBOK, d MAKONIC PO3POOKY cmpameiuHux Oill 6e3 HeoOXiOHocmi
YeHmpaniz08ano2o ynpaeiiHHA.

Kurouosa siominnicme 6i0 HaA6HUX piuieHb NONALAE 8 NOKANbHIL A8MOHOMHOCMI. KOJCHe CYOHO 30ammue
CAMOCMIUHO aHANI3Y8aMU CUMYAYitHi OaHi, opmysamu IHOOUHOOPIEHMOBAHI NOACHEHHA md 3MIHIO8AmuU
NOBEOIHKY 8I0N0GIOHO 00 NOMOUHOL 3a2po3u. Apximekmypa cucmemu RIOMPUMYE NIe2KUll RPOMOKON OOMIHY
cmpykmypoganumu nogioomnenusimu y gopmami JavaScript Object Notation onst weuokoi migxccyOHoeoi
KOMYHIKaQYii ma OeyeHmpanizoeanuil KOHCEHCYCHULL MEXAHi3M Ha OCHOBI mampuyi 008ipu, wo OUHAMIYHO
OHOBNIOEMBCA.

Egexmuernicmo nioxody npooemoHcmposano Ha cumyibosanomy cyenapii amaxu GPS-cnygine npomu oonoeo
3 1 AMu a8MoHOMHUX cyOeH. Pezyibmamu niomeepounu 30amuicmes CUCmeMu moyHO JOKALIZY8aAmMuU 0dlcepeio
3aepo3u, niompumyeamu YiricHicme micii ¢romy ma adanmueHo nepedy0o8y8amu HAGIAYIUHI DIULeHHS y
8I0N06i0b HA KIDEePIHYUOeHn.

Knrwuosi cnoea: asmomnomui cyoma; xonexkmusHa Kibepoesneka;, GPS-cnyghine; eenuxi mosHi mooeni;
Oeyenmpanizoéana Kkoopounayis, Ollama; Al-nomiynux, Kibepcmilikicms, MyIbMUAeHMHI  cucmemit,
Mampuys 0osipu.
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