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As maritime operations become increasingly complex, there is a growing need for objective, scalable methods 
to evaluate seafarer competence beyond traditional instructor-based assessments. This study presents a 
comprehensive, data-driven framework for analyzing cadet performance in maritime simulator exercises, 
utilizing state-of-the-art unsupervised learning and explainable AI. The research draws on multivariate time-
series data from navigational simulations, capturing vessel dynamics, control actions, and environmental 
parameters across dozens of features. A rigorous preprocessing pipeline was applied, combining statistical 
feature aggregation and redundancy reduction through Pearson correlation and Mutual Information. This 
yielded a compact, yet informative feature set encompassing control inputs, navigational states, and vessel 
motions. To offset limited number of sessions small in the dataset, each simulation was split into meaningful 
intervals by applying rolling window statistics. Each window was then encoded as a summary vector, 
reflecting both central tendencies and temporal variability. The analysis employed the HDBSCAN clustering 
algorithm, which excels in detecting groups of variable density and naturally identifies outlier behaviors—
critical in the context of training evaluation. The resulting clusters were projected into lower-dimensional 
space via t-SNE, providing interpretable visualizations of cadet performance patterns. To further elicit the 
distinguishing characteristics of each group, a linear Support Vector Machine was trained to predict cluster 
membership, with SHapley Additive exPlanations (SHAP) attributing each decision to underlying features. Key 
findings reveal that clusters align with distinct navigational strategies: stable, conservative approaches are 
differentiated from more dynamic or risk-prone styles by features such as roll velocity, yaw rate, and engine 
RPM. Sessions flagged as outliers typically exhibited abrupt maneuvers or inconsistent control usage, 
highlighting potential skill gaps. The SHAP-based interpretability layer transforms complex model outputs into 
actionable instructional feedback, enabling targeted interventions and tailored training. Overall, this 
automated approach has potential to become a transparent, scalable alternative to subjective grading in 
maritime education, with significant implications for enhancing safety and developing individualized learning 
pathways. The proposed system demonstrates strong potential for integration into real-world training 
environments and continuous improvement as more operational data becomes available. 
Key words: water transport; operation of transport facilities; navigation safety; human factor; automation; 
risk; intelligent systems; LAD. 
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Introduction. Despite technological advances in the maritime industry – ship design, 

navigational systems, and sensor technologies – human error remains a primary contributing factor 
to naval accidents, accounting for more than 85% of all accidents [1]. The International Maritime 
Organization (IMO) continues to emphasize the critical role of human factors in maritime safety, 
especially in complex navigational contexts such as port approaches and congested sea lanes [2]. 

Advancements in sensor technologies, such as ECG, eye tracking, etc., increased 
connectivity of ships, a surge in computational and data collection capabilities, and popularization 
of machine learning techniques have expanded existing and allowed new capabilities in monitoring 
and assisting humans in the maritime context [3]. These technological improvements allowed 
advancements in navigator fatigue detection, advanced trajectory prediction, anomaly detection in 
AIS data, and many other use cases [4–6]. 

In parallel, a shortage of qualified training professionals in the maritime labor market causes 
accelerated promotion of marine professionals. Therefore, cadets have less time to develop 
necessary seafaring skills. According to a 2021 report by the Baltic and International Maritime 
Council (BIMCO) and the International Chamber of Shipping (ICS), the global merchant fleet is 
expected to keep expanding, maintaining a high demand for skilled maritime professionals. 
Nevertheless, the industry continues to face a shortage of qualified personnel. Projections estimate 
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that an additional 17,902 officers will be needed annually through 2026 to meet the operational 
needs of the global merchant fleet [7].  

Vocational education must ensure individuals develop the essential knowledge, skills, and 
competencies required for professional success [8]. Therefore, it's necessary to create effective and 
sound methods of preparing maritime staff. The maritime industry has long been relying on 
simulator training to optimize education. However, assessment methods in simulation training are 
predominantly subjective, relying primarily on the judgment and experience of instructors. This 
introduces variability and potential bias in the evaluation of navigation competencies. 

To address these challenges, the application of machine learning to maritime simulator log 
data offers a promising opportunity. Learning Analytics Dashboards (LADs) have demonstrated 
value in educational technology domains, offering a framework for integrating objective, data-
driven insights into maritime training. Together with predictive models, LADs can improve the 
feedback for trainees and instructors and serve as an early-warning system for suboptimal 
performance [9]. 

Research Purpose and Objectives. The purpose of this study is to develop a method for 
identifying and evaluating cadet navigational behavior and decision-making strategies in maritime 
simulator training environments using intelligent, data-driven approaches. The study aims to 
enhance the objectivity and precision of performance assessment, reduce dependence on instructor 
subjectivity, and enable early detection of potentially unsafe operational patterns. To achieve this, 
the following research objectives are formulated: 

1. To propose an approach for the automated analysis of navigational and control data 
recorded during maritime simulation exercises, with a focus on identifying behavioral patterns 
relevant to operator performance. 

2. To establish a framework for classifying and assessing navigational and control 
strategies, enabling the recognition of outlier behaviors indicative of suboptimal decisions, skill 
gaps, or elevated operational risk. 

3. To examine the potential of unsupervised learning methods for segmenting and 
evaluating cadet performance to inform adaptive training, targeted feedback, and early-risk 
intervention strategies in simulator-based education. 

Primary Research Material. To achieve the outlined objective, a dataset was prepared that 
comprises time-series simulation data from 13 independent navigational exercises performed by 
different cadets using model Navi Trainer Professional 5000 [10] simulator conducting a passage 
through the Bosphorus strait. The extracted dataset (Fig. 1) captures vessel dynamics and 
environmental conditions across 44 parameters valid for the exercise under discussion and selected 
vessel type.  

 
Figure 1 – Fragment of data extracted from TRANSAS NTPRO 5000 
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Here’s brief description of the features provided: pos_east, pos_north are position relative to 
the starting point of the exercise; roll is the tilting motion of a ship from side to side; pitch is the up-
and-down tilting motion of the ship; yaw is side-to-side motion of the ship about it vertical axis; 
surge is the forward and backward motion of the ship along its longitudinal axis; sway is the side-
to-side motion of the ship along its transverse axis; heave is vertical motion of the ship along its 
vertical axis. u_speed forward surge velocity speed, v_speed sideway sway velocity, rpm_mid 
indicates Revolutions Per Minute (RPM) of a main propulsion unit; rud_mid shows rudder angel 
and rpm_mid_cmd commanded but potentially not yet achieved main engine RPM value.  

Upon conducting Exploratory Data Analysis (EDA) [11], the list of meaningful features was 
reduced to 33 by eliminating non-relevant columns for this vessel type, columns with few values, 
e.g., the autopilot was turned off for all exercises and therefore had only one value. 

Additionally, a set of similarity metrics was computed to avoid supplying duplicate 
information to the model and further decrease redundant computaxftions – the Pearson Correlation 
Coefficient [12], which measures the linear similarity between two variables (1). 
 

 ,                                               (1) 

where: : individual sample points; 
 sample means; 

            number of observations. 
A correlation value close to +1 or –1 indicates a strong linear relationship, while a value 

near 0 suggests no linear correlation. To minimize redundant input information to the model and 
reduce the dimensionality of the feature space, features with correlation of |r| > 0.8 were examined 
and closely and staged for elimination to the modeling step. Additionally, the corresponding matrix       
(Fig. 2) helped us eliminate perfectly correlated features that naturally could be foreshadowed by 
the constraints of the physical system. For example, it's logical that when the yaw rate of the ship 
increases, its velocity at the stern will also increase during the turn. 

 
Figure 2 – Pearson R values calculated for features in the dataset 
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With the intention of conducting a thorough analysis, it's usually necessary to supplement 
the Pearson Coefficient with another measure of similarity, such as Spearman's rank or Mutual 
Information [14]. Since Pearson r assumes the underlying relationship is symmetric and 
homoscedastic, it can miss or underestimate important nonlinear or monotonic patterns. Mutual 
Information [13] metrics was used as another similarity measure. Overall, it quantifies the total 
dependency between variables, measures the information one variable contains about another, and 
captures both linear and nonlinear dependencies (2). By combining Pearson correlation with Mutual 
Information, one obtains a more holistic understanding of the structure and dependencies in the data 
[15]. 

    ;                               (2) 
 

                              ;                                                  (3) 
 

   ;                                                      (5) 
 

     ,                                                      (6) 
 

wherе  joint probability distribution of X and Y (3); 
 marginal probability distributions (5, 6). 

 
Figure 3 – Mutual Information values calculated for features in the dataset 
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Applying this technique helped us confirm correlated features from calculating the Pearson 
Coefficient and identify new naturally outcoming similarities. For example, MI coefficient between 
uw_speed and u_speed of 9.257 and uv_speed and v_speed of 8.065 indicated that given our dataset 
and for modeling purposes undewater vessel speed wouldn’t represent meaningful information. 

Following both procedures mentioned above, the list of meaningful features was reduced to 
a tight list that will provide meaningful information. The features of control such as current mid-
engine RPM (rpm_mid), commanded mid-engine RPM (rpm_mid_cmd), current rudder angle 
(rud_mid), commanded rudder angle (rud_mid_cmd). The trajectory or directional features include 
the eastward position coordinate (pos_east) and northward position coordinate (pos_north). The 
motion features describe the ship's movement on the cartesian coordinate system, such as pitch, roll, 
yaw, sway, and surge. Velocity features forward surge velocity (u_speed), sideways sway velocity 
(v_speed), velocity at the bow (v_bow) and velocity at the stern (v_stern). While it’s acknowledged 
that weather-related features might trigger different behaviors of navigators, weather-related 
features were decided to be eliminated since the data in our experiment contained almost identical 
weather conditions. 

Modelling. A novel unsupervised learning pipeline is proposed to facilitate actionable, 
interpretable feedback for cadets and instructors participating in maritime simulation exercises      
(Fig. 4). First, the multivariate time series data was preprocessed for each session using established 
time series feature engineering techniques. This includes calculating aggregate statistics (e.g., mean, 
standard deviation, minimum, maximum, skewness, and kurtosis) over rolling windows, as well as 
generating lagged features that capture recent trends and temporal dependencies in the navigational 
telemetry. The resulting set of fixed-length feature vectors represents each exercise session in a 
manner that preserves relevant temporal dynamics while remaining interpretable. These feature 
vectors are then clustered using a Gaussian Mixture Model (GMM), enabling the identification of 
groups of cadets exhibiting similar navigational behavior or performance patterns. To further 
enhance the interpretability of each cluster, an XGBoost classifier was trained [17] as a surrogate 
model to predict cluster membership based on the engineered features. The feature importances and 
decision logic of this model are subsequently analyzed using SHapley Additive exPlanations 
(SHAP) [18], providing domain-relevant, actionable insights into the behavioral characteristics 
defining each group. This integrated approach supports data-driven instructional feedback and 
personalized training interventions within maritime education. The resulting explanations enable 
instructors to target training interventions toward specific performance factors, ultimately 
supporting more effective and individualized learning pathways. 

 

 
Figure 4 – Modeling pipeline overview 

Preprocessing. A systematic feature engineering was performed on the raw navigational 
telemetry data to enable robust, session-level analysis and clustering. In order to mitigate small 
sample size of 13 sessions we decided to cluster navigator behavior on events within the session by 
partitioning each session into fixed-length windows of 10 minutes with 50% overlap, generating 
roughly 15–20 segments per session. The total number that our method generated was 201. For each 
segment, a set of global statistical descriptors was extracted from the original features to summarize 
temporal dynamics while reducing dimensionality. 

Specifically, for each numeric telemetry feature, a suite of standard aggregate statistics was 
calculated – including the mean, standard deviation, minimum, and maximum values – across all 
timesteps within a session. Mathematically, for a feature x and session s, it was computed: 

Mean:  

Standard deviation: , 
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Minimum: , 
Maximum: , 
where T denotes the number of timesteps in session s. This procedure was implemented by 
grouping the data by series_id and slicing desired window interval, and applying the aggregation 
functions to each feature, resulting in a single summary vector per segment. The resulting feature 
matrix thus captures both central tendencies and variability for each navigational segment, laying 
the foundation for interpretable clustering and subsequent analysis (see Figure 4 for an overview of 
the preprocessing workflow). 

Clustering. Given our aim to identify natural groupings within rolling-, several clustering 
algorithms was considered: KMeans [19], Gaussian Mixture Models (GMM) [20], DBSCAN [21], 
and HDBSCAN [22]. KMeans and GMMs are widely used centroid-based approaches that assume 
convex, isotropic structures and require the number of clusters k to be specified in advance. This 
poses significant limitations for our application, as the actual number of navigational behavior types 
is unknown, and the expected cluster shapes may be non-spherical and of varying density. 
Moreover, these algorithms are sensitive to noise and outliers, which might be problematic given 
our small sample size. DBSCAN addresses many of these challenges by defining clusters as dense 
regions of data points separated by areas of lower point density. However, DBSCAN is limited by 
its reliance on a global density threshold , making it ill-suited to discover clusters of differing 
densities – a characteristic anticipated in our rolling-window aggregated representations.  

To overcome these limitations, HDBSCAN (Hierarchical Density-Based Spatial Clustering 
of Applications with Noise), was selected, which generalizes DBSCAN by allowing the detection of 
clusters with variable densities and does not require the number of clusters to be specified. 
HDBSCAN is thus highly suitable for our experimental context, where data may exhibit clusters of 
widely varying density and shape and where noise and outliers are prevalent. 

HDBSCAN adopts the core distance concept initially introduced in the DBSCAN and LOF 
literature. For a point x, the core distance concerning a parameter k is denoted as  (7) and 
formally defined as the distance from x to its k-th nearest neighbor (inclusive): 

                                    (7) 

 
Figure 5 – HDSCAN reachability distance 
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However, to effectively distinguish and separate points in sparse areas (with high core 
distance), HDSCAN introduces the mutual reachability distance (Fig. 5) between two points, a and 
b, denoted (8)  

  ,                               (8) 
 
where d(a,b) is the original metric (e.g., Euclidean) distance between a and b. The multiple different 
points are depicted with different colors. The next step is to build a Minimum Spanning Tree (MST) 
using Prim's algorithm – the tree is constructed one edge at a time, always adding the lowest weight 
edge that connects the current tree to a vertex not yet in the tree (Fig. 6). 

 
Figure 6 – HDBSCAN's Minimum Spanning Tree (MST) 

After obtaining the MST, the conversion to a hierarchy of connected components takes place 
in reverse order by sorting the edges of the tree by distance and iterating over them using a union-
find data structure. Subsequently, the algorithm condenses the hierarchy by eliminating clusters that 
persist over a small range of distance thresholds and retaining stable clusters over a wide range of 
thresholds (6). Stability is defined by: 
 

                                                                  (9) 
 

Finally, HDBSCAN extracts the most stable clusters from the condensed tree. Each data 
point is assigned to a cluster or noise. Given the performance characteristics, ease of use, and 
suitability for potential noise simulation data, the DBSCAN algorithm was preferred. 

HDBSCAN clustering algorithm was applied to the aggregated session-level feature data, 
adjusting the min_cluster_size parameter to 8 and min_samples to 1. t-distributed stochastic 
neighbors embedding (t-SNE) was employed to project the high-dimensional feature vectors onto 
the first two components to visualize the clustering structure in a reduced-dimensional space. Figure 
7 presents the resulting clusters, with each point representing a navigational segment and colors 
denoting cluster membership.  
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Points labeled "-1" correspond to sessions that HDBSCAN could not confidently assign to 
any cluster, reflecting their outlier or ambiguous nature in the feature space. The visualization 
reveals that algorithm identified three distinct clusters labeled: "0", "1", and "2". While the amount 
of noise is noteworthy, the clusters still appear to be distinguishable. The amount of noise can be 
explained by the inherent discrepancies in real world data which occurs during educational 
simulation. For example, not all students started performing exercise immediately even though the 
session was already initiated. Interferences of this kind is inevitable and therefore, it’s important to 
build systems that can understand those patterns and know how to distinguish them.  

 
Figure 7 – HDBSCAN clusters visualized using t-SNE 

Support Vector Machines SVM classifier was trained to interpret clustering results on the 
obtained cluster labels. SVMs are supervised learning models well-suited for classification tasks, 
particularly with small and high-dimensional datasets [23]. SVMs operate by identifying the 
optimal separating hyperplane in the feature space that maximally distinguishes between different 
classes. In its linear form, the SVM seeks the hyperplane defined by the equation (10): 

 

       ,                                                     (10) 

where  is the normal vector to the hyperplane and b is the intercept. The decision rule for class 
assignment is based on the sign of this function. The optimal hyperplane (11) finds the optimal by 
maximizing the margin – the distance between the hyperplane and the closest data points from each 
class (called support vectors): 
 

      ;                                                             (11) 
 

subject to , 

where  are class labels (Fig. 8). 
To handle nonlinear class boundaries, SVMs can employ the kernel trick, implicitly 

mapping data into a higher-dimensional feature space where linear separation is feasible [24]. 
However, in our application, a linear SVM was employed for maximum interpretability and 
computational efficiency, given the limited sample size. 
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Figure 8 – Illustration of Linear SVM: Support Vectors and Margin 

Support Vector Machines were chosen as the surrogate model for cluster explanation due to 
several compelling advantages in our experimental context. First, SVMs are particularly well-suited 
for small datasets because the support vectors determine their decision boundary. This helps 
mitigate the risk of overfitting and enhances robustness to limited sample sizes [25]. Moreover, in 
the linear case, SVMs are inherently interpretable, as the coefficients of the decision function  
directly quantify the importance of each feature in distinguishing between clusters, providing 
transparent insight into the classification process [26].  

SVMs also integrate effectively with SHAP (SHapley Additive exPlanations) [27], allowing 
us to quantify the contribution of individual features to each cluster assignment and thus facilitate 
nuanced, quantitative analysis of navigational behaviors, even in multi-class scenarios. 
Furthermore, SVMs are relatively robust to the curse of dimensionality and do not require extensive 
hyperparameter tuning, which is particularly advantageous given our small dataset and the 
engineered feature space. These properties make the SVM classifier an ideal and interpretable 
surrogate for elucidating which engineered features most influence the assignment of navigational 
sessions to each cluster, thereby bridging unsupervised clustering with actionable, human-
understandable feedback for instructors and cadets. 

Interpretability. To translate model predictions into actionable feedback for cadets and 
instructors, SHAP (SHapley Additive exPlanations) was utilized to attribute each cluster 
assignment to its underlying feature contributions. SHAP is a state-of-the-art, model-agnostic 
framework for explainable artificial intelligence [27]. It is grounded in cooperative game theory, 
specifically the concept of Shapley values, which allocate credit for a model's output among its 
input features. For each prediction, the SHAP value  (12) for feature j is computed as the average 
marginal contribution of that feature across all possible feature subsets: 

   ,                               (12) 

where F is the set of all features, S is a subset of features not containing j, and  is the model 
trained on features in S. This formulation ensures that feature attributions are consistent, locally 
accurate, and add up to the difference between the model's prediction and its expected value [28]. 
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For each session in our dataset, SHAP values were computed for all features attributing the 
factors underlying each cluster assignment. These attributions were visualized using SHAP 
summary and bar plots (Fig. 9), which rank features by their global importance and show both the 
magnitude and direction of their effect on cluster membership. This interpretability framework 
identifies the most influential navigational features across all cadets and supports actionable, 
individualized feedback by revealing which specific behaviors most contributed to a segment’s 
cluster assignment. The feedback can be traced to specific segment in the session and therefore can 
be traced back to the exact location of occurrence. As a result, SHAP bridges the gap between 
complex machine learning outputs and human-understandable instructional insights. 

 
Figure 9 – Illustration of SHAP values for each identified cluster 

The SHAP value analysis for each cluster – corresponding to distinct patterns of 
navigational performance, including noise/outlier sessions – reveals the features most influential in 
determining cluster assignments.  

For sessions identified as outliers or noise (Cluster -1) and for sessions in Cluster 0, the 
mean vertical speed (v_speed_mean), average roll angle (roll_mean), followed by average rate of 
change of pitch (pitch_vel_mean) and average mid-propeller RPM (rpm_mid_mean) are the top 
contributors to the cluster attribution. This combination of elevated lateral motion and vessel roll 
suggests instability – possibly due to corrections and rude steering. The lower value of propeller 
PRM in the Cluster 0 may indicate attempt to maneuver at lower speeds. 

For Cluster 1, the mean roll velocity (roll_mean), mean longitudinal speed (v_speed_mean), 
and average propeller RPM (rpm_mid_mean) are defining features. This perhaps could indicate 
stable vessel motion where cadets exhibit stable navigation with consistent lateral motion and 
propulsion given relatively moderate SHAP values across features and the fact that this corresponds 
to the largest cluster identified. 

Segments in Cluster 2 show high importance of average propeller RPM (rpm_mid_mean), 
suggesting that cadets in this group rely heavily on propulsion power for navigation. This behavior 
may be required in certain contexts but might also lead to sharp or energy-inefficient maneuvers. 

While those suggestions offer global patterns of behavior, the system can trace back the 
segment classified as certain cluster and provide detailed view on what was happening with the 
vessel and navigator at that time interval. This should greatly assist and quicken instructor’s ability 
to provide actionable feedback to cadets. 

Conclusion. This study has demonstrated the feasibility and utility of applying unsupervised 
machine learning and explainable AI techniques to maritime simulator data for the automated 
assessment of cadet navigational performance. By engineering interpretable features from raw time-
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series telemetry and leveraging advanced clustering algorithms such as HDBSCAN, the proposed 
pipeline effectively identifies meaningful patterns in cadet behaviors during simulation exercises. 
The integration of surrogate models and SHAP-based interpretability provides actionable feedback, 
enabling instructors to tailor training interventions to address specific performance gaps and 
reinforce safe navigational strategies. Notably, the results underline the pivotal role of key 
features—such as roll velocity, propeller RPM, and sideway velocity – in distinguishing between 
stable, dynamic, and anomalous navigational styles. These findings support the transition from 
subjective, instructor-driven assessments toward a more objective, data-driven approach in maritime 
education, with the potential to reduce human error and enhance overall maritime safety. 

Prospects for further research. Despite promising results, several avenues remain open for 
future research. First, expanding the dataset to include a larger and more diverse sample of cadets 
and navigational scenarios will strengthen the generalizability and robustness of the findings. Future 
work may also focus on real-time deployment of the feedback system, enabling adaptive, in-situ 
guidance during simulation or actual vessel operation. Moreover, integrating the proposed method 
with fuzzy logic-based risk assessment frameworks may further enhance the system’s capability to 
support decision-making under uncertainty. Finally, collaboration with maritime training 
institutions and stakeholders will be essential for validating the practical impact of automated 
feedback tools and for driving the evolution of competency-based, individualized maritime 
education.  
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Кочубей П., Носов П. ВИЗНАЧЕННЯ ВПЛИВУ ФАКТОРУ ОПЕРАТОРІВ-СУДНОВОДІЇВ 
ЗАСОБАМИ НАВІГАЦІЙНОГО ТРЕНАЖЕРУ 
У міру ускладнення морських операцій зростає потреба у впровадженні об'єктивних та 
масштабованих методів оцінювання компетентності моряків, що виходять за межі традиційних 
інструкторських підходів. У цьому дослідженні представлено комплексну, базовану на даних систему 
аналізу роботи курсантів у тренажерних вправах, яка використовує сучасні методи без наочного 
навчання та пояснюваного штучного інтелекту (AI). Для аналізу використовувалися багатовимірні 
часові ряди з навігаційних симуляцій, що охоплюють динаміку судна, дії екіпажу та параметри 
навколишнього середовища за десятками різних ознак. Було реалізовано ретельний етап попередньої 
обробки даних, який поєднує агрегування статистичних ознак та усунення надлишкової інформації за 
допомогою коефіцієнта кореляції Пірсона та взаємної інформації. Це дозволило сформувати 
компактний, але інформативний набір характеристик, який відображає як керуючі впливи, так і 
навігаційні стани та рух судна. Кожну сесію симуляції було закодовано у вигляді вектора, що фіксує 
середні значення та варіативність параметрів протягом виконання вправи. Для кластеризації було 
обрано алгоритм HDBSCAN, який особливо ефективний для виявлення груп із різною щільністю та 
автоматично виділяє аномальні випадки, що критично важливо для оцінки підготовки. Знайдені 
кластери візуалізували за допомогою Т-розподіленого вкладення стохастичної близькості (t-SNE), що 
дозволило інтерпретувати патерни дій курсантів. Для пояснення особливостей кожної групи було 
навчено лінійну SVM-модель, а метод SHAP допоміг проаналізувати, які саме ознаки впливають на 
рішення моделі. Основні результати показали, що кластери відповідають різним стилям навігації: 
стабільні, обережні підходи відрізняються від динамічних чи ризикованих за такими 
характеристиками, як швидкість крену, кутовий рух (yaw_rate) та оберти двигуна. Сесії, віднесені до 
аномалій, зазвичай характеризуються різкими маневрами чи нестійким керуванням, що може 
свідчити про наявність прогалин у навичках. Інтерпретовані SHAP-значення перетворюють складні 
висновки моделі на зрозумілі для інструкторів рекомендації, даючи можливість адресно працювати з 
недоліками кожного курсанта. Запропонований підхід може стати прозорою та масштабованою 
альтернативою суб’єктивному оцінюванню у морській освіті, з реальними перспективами для 
підвищення безпеки та персоналізації навчання. Система показує високий потенціал інтеграції в 
практичне середовище підготовки кадрів та подальшого розвитку з розширенням масиву доступних 
даних. 
Ключові слова: водний транспорт; експлуатація засобів транспорту; безпека судноплавства; фактор 
людини; автоматизація; ризик; інтелектуальні системи; інформаційні панелі аналітики навчання 
(ІПАН). 
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