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As maritime operations become increasingly complex, there is a growing need for objective, scalable methods
to evaluate seafarer competence beyond traditional instructor-based assessments. This study presents a
comprehensive, data-driven framework for analyzing cadet performance in maritime simulator exercises,
utilizing state-of-the-art unsupervised learning and explainable Al. The research draws on multivariate time-
series data from navigational simulations, capturing vessel dynamics, control actions, and environmental
parameters across dozens of features. A rigorous preprocessing pipeline was applied, combining statistical
feature aggregation and redundancy reduction through Pearson correlation and Mutual Information. This
yielded a compact, yet informative feature set encompassing control inputs, navigational states, and vessel
motions. To offset limited number of sessions small in the dataset, each simulation was split into meaningful
intervals by applying rolling window statistics. Each window was then encoded as a summary vector,
reflecting both central tendencies and temporal variability. The analysis employed the HDBSCAN clustering
algorithm, which excels in detecting groups of variable density and naturally identifies outlier behaviors—
critical in the context of training evaluation. The resulting clusters were projected into lower-dimensional
space via t-SNE, providing interpretable visualizations of cadet performance patterns. To further elicit the
distinguishing characteristics of each group, a linear Support Vector Machine was trained to predict cluster
membership, with SHapley Additive exPlanations (SHAP) attributing each decision to underlying features. Key
findings reveal that clusters align with distinct navigational strategies: stable, conservative approaches are
differentiated from more dynamic or risk-prone styles by features such as roll velocity, yaw rate, and engine
RPM. Sessions flagged as outliers typically exhibited abrupt maneuvers or inconsistent control usage,
highlighting potential skill gaps. The SHAP-based interpretability layer transforms complex model outputs into
actionable instructional feedback, enabling targeted interventions and tailored training. Overall, this
automated approach has potential to become a transparent, scalable alternative to subjective grading in
maritime education, with significant implications for enhancing safety and developing individualized learning
pathways. The proposed system demonstrates strong potential for integration into real-world training
environments and continuous improvement as more operational data becomes available.

Key words: water transport; operation of transport facilities; navigation safety; human factor; automation;
risk; intelligent systems; LAD.

DOI: 10.33815/2313-4763.2025.1.30.158-170

Introduction. Despite technological advances in the maritime industry — ship design,
navigational systems, and sensor technologies — human error remains a primary contributing factor
to naval accidents, accounting for more than 85% of all accidents [1]. The International Maritime
Organization (IMO) continues to emphasize the critical role of human factors in maritime safety,
especially in complex navigational contexts such as port approaches and congested sea lanes [2].

Advancements in sensor technologies, such as ECG, eye tracking, etc., increased
connectivity of ships, a surge in computational and data collection capabilities, and popularization
of machine learning techniques have expanded existing and allowed new capabilities in monitoring
and assisting humans in the maritime context [3]. These technological improvements allowed
advancements in navigator fatigue detection, advanced trajectory prediction, anomaly detection in
AIS data, and many other use cases [4—6].

In parallel, a shortage of qualified training professionals in the maritime labor market causes
accelerated promotion of marine professionals. Therefore, cadets have less time to develop
necessary seafaring skills. According to a 2021 report by the Baltic and International Maritime
Council (BIMCO) and the International Chamber of Shipping (ICS), the global merchant fleet is
expected to keep expanding, maintaining a high demand for skilled maritime professionals.
Nevertheless, the industry continues to face a shortage of qualified personnel. Projections estimate
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that an additional 17,902 officers will be needed annually through 2026 to meet the operational
needs of the global merchant fleet [7].

Vocational education must ensure individuals develop the essential knowledge, skills, and
competencies required for professional success [8]. Therefore, it's necessary to create effective and
sound methods of preparing maritime staff. The maritime industry has long been relying on
simulator training to optimize education. However, assessment methods in simulation training are
predominantly subjective, relying primarily on the judgment and experience of instructors. This
introduces variability and potential bias in the evaluation of navigation competencies.

To address these challenges, the application of machine learning to maritime simulator log
data offers a promising opportunity. Learning Analytics Dashboards (LADs) have demonstrated
value in educational technology domains, offering a framework for integrating objective, data-
driven insights into maritime training. Together with predictive models, LADs can improve the
feedback for trainees and instructors and serve as an early-warning system for suboptimal
performance [9].

Research Purpose and Objectives. The purpose of this study is to develop a method for
identifying and evaluating cadet navigational behavior and decision-making strategies in maritime
simulator training environments using intelligent, data-driven approaches. The study aims to
enhance the objectivity and precision of performance assessment, reduce dependence on instructor
subjectivity, and enable early detection of potentially unsafe operational patterns. To achieve this,
the following research objectives are formulated:

1. To propose an approach for the automated analysis of navigational and control data
recorded during maritime simulation exercises, with a focus on identifying behavioral patterns
relevant to operator performance.

2. To establish a framework for classifying and assessing navigational and control
strategies, enabling the recognition of outlier behaviors indicative of suboptimal decisions, skill
gaps, or elevated operational risk.

3. To examine the potential of unsupervised learning methods for segmenting and
evaluating cadet performance to inform adaptive training, targeted feedback, and early-risk
intervention strategies in simulator-based education.

Primary Research Material. To achieve the outlined objective, a dataset was prepared that
comprises time-series simulation data from 13 independent navigational exercises performed by
different cadets using model Navi Trainer Professional 5000 [10] simulator conducting a passage
through the Bosphorus strait. The extracted dataset (Fig. 1) captures vessel dynamics and
environmental conditions across 44 parameters valid for the exercise under discussion and selected
vessel type.

pos_east pos_north yaw heave pitch roll surge u_speed v speed rpm_mid rud_mid rpm_mid_cmd

0 4.62 13.49 0.000 0.000 0.183 0.000 0.000 0.002 -0.004 0 0 0
1 4.62 13.48 -0.000 -0.001 0.181 0.040 0.001 0.003 -0.004 0 0 0
2 4.62 13.49 0.000 -0.003 0.174 0.032 0.000 0.003 -0.004 0 0 0
3 4.62 13.49 0.000 -0.015 0.166 0.022 0.000 0.003 -0.004 0 0 0
4 4.62 13.48 0.001 -0.011 0.157 0.014 -0.001 0.003 -0.004 0 0 0
5 4.62 13.49 0.001 -0.005 0.150 0.007 -0.000 0.003 -0.004 0 0 0
6 4.62 13.49 0.002 -0.007 0.147 0.002 0.000 0.003 -0.005 0 0 0
T 4.62 13.48 0.003 -0.001 0.147 -0.002 0.001 0.003 -0.005 0 0 0
8 4.62 13.49 0.004 -0.002 0.149 -0.005 0.000 0.003 -0.005 0 0 0
9 4.62 13.49 0.005 0.001 0154 -0.007 -0.000 0.003 -0.005 0 0 0

Figure 1 — Fragment of data extracted from TRANSAS NTPRO 5000

ISSN-print 2313-4763; ISSN-online 3041-1939 159



m TpaHCHIOPTHI TE€XHOAOTI1

Here’s brief description of the features provided: pos_east, pos_north are position relative to
the starting point of the exercise; roll is the tilting motion of a ship from side to side; pitch is the up-
and-down tilting motion of the ship; yaw is side-to-side motion of the ship about it vertical axis;
surge is the forward and backward motion of the ship along its longitudinal axis; sway is the side-
to-side motion of the ship along its transverse axis; heave is vertical motion of the ship along its
vertical axis. uU_speed forward surge velocity speed, v_speed sideway sway velocity, rpm_mid
indicates Revolutions Per Minute (RPM) of a main propulsion unit; rud_mid shows rudder angel
and rpm_mid_cmd commanded but potentially not yet achieved main engine RPM value.

Upon conducting Exploratory Data Analysis (EDA) [11], the list of meaningful features was
reduced to 33 by eliminating non-relevant columns for this vessel type, columns with few values,
e.g., the autopilot was turned off for all exercises and therefore had only one value.

Additionally, a set of similarity metrics was computed to avoid supplying duplicate
information to the model and further decrease redundant computaxftions — the Pearson Correlation
Coefficient [12], which measures the linear similarity between two variables (1).

Tey = Yz (=0 i=y) 1 (1)
[P G S i3y
where: x;, y;: individual sample points;

X, y: sample means;

n: number of observations.

A correlation value close to +1 or —1 indicates a strong linear relationship, while a value
near 0 suggests no linear correlation. To minimize redundant input information to the model and
reduce the dimensionality of the feature space, features with correlation of |r| > 0.8 were examined
and closely and staged for elimination to the modeling step. Additionally, the corresponding matrix
(Fig. 2) helped us eliminate perfectly correlated features that naturally could be foreshadowed by
the constraints of the physical system. For example, it's logical that when the yaw rate of the ship
increases, its velocity at the stern will also increase during the turn.
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Figure 2 — Pearson R values calculated for features in the dataset
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With the intention of conducting a thorough analysis, it's usually necessary to supplement
the Pearson Coefficient with another measure of similarity, such as Spearman's rank or Mutual
Information [14]. Since Pearson r assumes the underlying relationship is symmetric and
homoscedastic, it can miss or underestimate important nonlinear or monotonic patterns. Mutual
Information [13] metrics was used as another similarity measure. Overall, it quantifies the total
dependency between variables, measures the information one variable contains about another, and
captures both linear and nonlinear dependencies (2). By combining Pearson correlation with Mutual
Information, one obtains a more holistic understanding of the structure and dependencies in the data
[15].

[(6Y) = Sxex yer p(x, ) log (SE52) ; @)
p(x,y) = SEEED, 3)

p(x) = =, (5)

p(y) = =2, (6)

where p(x, y): joint probability distribution of X and Y (3);
p(x), p(y): marginal probability distributions (5, 6).
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Figure 3 — Mutual Information values calculated for features in the dataset
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Applying this technique helped us confirm correlated features from calculating the Pearson
Coefficient and identify new naturally outcoming similarities. For example, MI coefficient between
uw_speed and u_speed of 9.257 and uv_speed and v_speed of 8.065 indicated that given our dataset
and for modeling purposes undewater vessel speed wouldn’t represent meaningful information.

Following both procedures mentioned above, the list of meaningful features was reduced to
a tight list that will provide meaningful information. The features of control such as current mid-
engine RPM (rpm_mid), commanded mid-engine RPM (rpm_mid_cmd), current rudder angle
(rud_mid), commanded rudder angle (rud_mid_cmd). The trajectory or directional features include
the eastward position coordinate (pos_east) and northward position coordinate (pos_north). The
motion features describe the ship's movement on the cartesian coordinate system, such as pitch, roll,
yaw, sway, and surge. Velocity features forward surge velocity (u_speed), sideways sway velocity
(v_speed), velocity at the bow (v_bow) and velocity at the stern (v_stern). While it’s acknowledged
that weather-related features might trigger different behaviors of navigators, weather-related
features were decided to be eliminated since the data in our experiment contained almost identical
weather conditions.

Modelling. A novel unsupervised learning pipeline is proposed to facilitate actionable,
interpretable feedback for cadets and instructors participating in maritime simulation exercises
(Fig. 4). First, the multivariate time series data was preprocessed for each session using established
time series feature engineering techniques. This includes calculating aggregate statistics (e.g., mean,
standard deviation, minimum, maximum, skewness, and kurtosis) over rolling windows, as well as
generating lagged features that capture recent trends and temporal dependencies in the navigational
telemetry. The resulting set of fixed-length feature vectors represents each exercise session in a
manner that preserves relevant temporal dynamics while remaining interpretable. These feature
vectors are then clustered using a Gaussian Mixture Model (GMM), enabling the identification of
groups of cadets exhibiting similar navigational behavior or performance patterns. To further
enhance the interpretability of each cluster, an XGBoost classifier was trained [17] as a surrogate
model to predict cluster membership based on the engineered features. The feature importances and
decision logic of this model are subsequently analyzed using SHapley Additive exPlanations
(SHAP) [18], providing domain-relevant, actionable insights into the behavioral characteristics
defining each group. This integrated approach supports data-driven instructional feedback and
personalized training interventions within maritime education. The resulting explanations enable
instructors to target training interventions toward specific performance factors, ultimately
supporting more effective and individualized learning pathways.

Data % Preprocessing % Clustering -9 Classification -% SHAP

Figure 4 — Modeling pipeline overview

Preprocessing. A systematic feature engineering was performed on the raw navigational
telemetry data to enable robust, session-level analysis and clustering. In order to mitigate small
sample size of 13 sessions we decided to cluster navigator behavior on events within the session by
partitioning each session into fixed-length windows of 10 minutes with 50% overlap, generating
roughly 15-20 segments per session. The total number that our method generated was 201. For each
segment, a set of global statistical descriptors was extracted from the original features to summarize
temporal dynamics while reducing dimensionality.

Specifically, for each numeric telemetry feature, a suite of standard aggregate statistics was
calculated — including the mean, standard deviation, minimum, and maximum values — across all
timesteps within a session. Mathematically, for a feature X and session S, it was computed:

11
Mean: Hx,s = T &t=1 Xs,t

. 2
Standard deviation: 0, ¢ = \/ % ZLl(xs,t — ux‘s) ,
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Minimum: min, ; = mingx,,
Maximum: max, s = max;Xs;,

where T denotes the number of timesteps in session S. This procedure was implemented by
grouping the data by series_id and slicing desired window interval, and applying the aggregation
functions to each feature, resulting in a single summary vector per segment. The resulting feature
matrix thus captures both central tendencies and variability for each navigational segment, laying
the foundation for interpretable clustering and subsequent analysis (see Figure 4 for an overview of
the preprocessing workflow).

Clustering. Given our aim to identify natural groupings within rolling-, several clustering
algorithms was considered: KMeans [19], Gaussian Mixture Models (GMM) [20], DBSCAN [21],
and HDBSCAN [22]. KMeans and GMMs are widely used centroid-based approaches that assume
convex, isotropic structures and require the number of clusters k to be specified in advance. This
poses significant limitations for our application, as the actual number of navigational behavior types
is unknown, and the expected cluster shapes may be non-spherical and of varying density.
Moreover, these algorithms are sensitive to noise and outliers, which might be problematic given
our small sample size. DBSCAN addresses many of these challenges by defining clusters as dense
regions of data points separated by areas of lower point density. However, DBSCAN is limited by
its reliance on a global density threshold &, making it ill-suited to discover clusters of differing
densities — a characteristic anticipated in our rolling-window aggregated representations.

To overcome these limitations, HDBSCAN (Hierarchical Density-Based Spatial Clustering
of Applications with Noise), was selected, which generalizes DBSCAN by allowing the detection of
clusters with variable densities and does not require the number of clusters to be specified.
HDBSCAN is thus highly suitable for our experimental context, where data may exhibit clusters of
widely varying density and shape and where noise and outliers are prevalent.

HDBSCAN adopts the core distance concept initially introduced in the DBSCAN and LOF
literature. For a point X, the core distance concerning a parameter K is denoted as corey (x) (7) and
formally defined as the distance from X to its k-th nearest neighbor (inclusive):

core, (x) = distance to the k-th nearest neighbor of x (7)
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Figure 5 — HDSCAN reachability distance
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However, to effectively distinguish and separate points in sparse areas (with high core
distance), HDSCAN introduces the mutual reachability distance (Fig. 5) between two points, a and
b, denoted (8)

dmreach-k(@ b) = max{corei(a), core,(b), d(a,b)}, (8)

where d(a,b) is the original metric (e.g., Euclidean) distance between a and b. The multiple different
points are depicted with different colors. The next step is to build a Minimum Spanning Tree (MST)
using Prim's algorithm — the tree is constructed one edge at a time, always adding the lowest weight
edge that connects the current tree to a vertex not yet in the tree (Fig. 6).
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Figure 6 — HDBSCAN's Minimum Spanning Tree (MST)

After obtaining the MST, the conversion to a hierarchy of connected components takes place
in reverse order by sorting the edges of the tree by distance and iterating over them using a union-
find data structure. Subsequently, the algorithm condenses the hierarchy by eliminating clusters that
persist over a small range of distance thresholds and retaining stable clusters over a wide range of
thresholds (6). Stability is defined by:

Z p € cluster(lp — Abirth). )

Finally, HDBSCAN extracts the most stable clusters from the condensed tree. Each data
point is assigned to a cluster or noise. Given the performance characteristics, ease of use, and
suitability for potential noise simulation data, the DBSCAN algorithm was preferred.

HDBSCAN clustering algorithm was applied to the aggregated session-level feature data,
adjusting the min_cluster_size parameter to 8 and min_samples to 1. t-distributed stochastic
neighbors embedding (t-SNE) was employed to project the high-dimensional feature vectors onto
the first two components to visualize the clustering structure in a reduced-dimensional space. Figure
7 presents the resulting clusters, with each point representing a navigational segment and colors
denoting cluster membership.
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Points labeled "-1" correspond to sessions that HDBSCAN could not confidently assign to
any cluster, reflecting their outlier or ambiguous nature in the feature space. The visualization
reveals that algorithm identified three distinct clusters labeled: "0", "1", and "2". While the amount
of noise is noteworthy, the clusters still appear to be distinguishable. The amount of noise can be
explained by the inherent discrepancies in real world data which occurs during educational
simulation. For example, not all students started performing exercise immediately even though the
session was already initiated. Interferences of this kind is inevitable and therefore, it’s important to
build systems that can understand those patterns and know how to distinguish them.
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Figure 7— HDBSCAN clusters visualized using t-SNE

Support Vector Machines SVM classifier was trained to interpret clustering results on the
obtained cluster labels. SVMs are supervised learning models well-suited for classification tasks,
particularly with small and high-dimensional datasets [23]. SVMs operate by identifying the
optimal separating hyperplane in the feature space that maximally distinguishes between different
classes. In its linear form, the SVM seeks the hyperplane defined by the equation (10):

wix+b=0, (10)

where w is the normal vector to the hyperplane and b is the intercept. The decision rule for class
assignment is based on the sign of this function. The optimal hyperplane (11) finds the optimal by
maximizing the margin - the distance between the hyperplane and the closest data points from each
class (called support vectors):

max (i) ; (11)

w,b \|W|

subject toy;(wTx; +b) =1 Vi,

where y; € —1,1 are class labels (Fig. 8).

To handle nonlinear class boundaries, SVMs can employ the kernel trick, implicitly
mapping data into a higher-dimensional feature space where linear separation is feasible [24].
However, in our application, a linear SVM was employed for maximum interpretability and
computational efficiency, given the limited sample size.
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Support Vector Machines were chosen as the surrogate model for cluster explanation due to
several compelling advantages in our experimental context. First, SVMs are particularly well-suited
for small datasets because the support vectors determine their decision boundary. This helps
mitigate the risk of overfitting and enhances robustness to limited sample sizes [25]. Moreover, in
the linear case, SVMs are inherently interpretable, as the coefficients of the decision function w
directly quantify the importance of each feature in distinguishing between clusters, providing
transparent insight into the classification process [26].

SVMs also integrate effectively with SHAP (SHapley Additive exPlanations) [27], allowing
us to quantify the contribution of individual features to each cluster assignment and thus facilitate
nuanced, quantitative analysis of navigational behaviors, even in multi-class scenarios.
Furthermore, SVMs are relatively robust to the curse of dimensionality and do not require extensive
hyperparameter tuning, which is particularly advantageous given our small dataset and the
engineered feature space. These properties make the SVM classifier an ideal and interpretable
surrogate for elucidating which engineered features most influence the assignment of navigational
sessions to each cluster, thereby bridging unsupervised clustering with actionable, human-
understandable feedback for instructors and cadets.

Interpretability. To translate model predictions into actionable feedback for cadets and
instructors, SHAP (SHapley Additive exPlanations) was utilized to attribute each cluster
assignment to its underlying feature contributions. SHAP is a state-of-the-art, model-agnostic
framework for explainable artificial intelligence [27]. It is grounded in cooperative game theory,
specifically the concept of Shapley values, which allocate credit for a model's output among its
input features. For each prediction, the SHAP value ¢; (12) for feature j is computed as the average

marginal contribution of that feature across all possible feature subsets:
ISIt(F|-]S[=1)!

bj = Lsermiy [fsuen (xsugy) = fs(xs)] 5 (12)

where F is the set of all features, S is a subset of features not containing j, and fs is the model
trained on features in S. This formulation ensures that feature attributions are consistent, locally
accurate, and add up to the difference between the model's prediction and its expected value [28].
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For each session in our dataset, SHAP values were computed for all features attributing the
factors underlying each cluster assignment. These attributions were visualized using SHAP
summary and bar plots (Fig. 9), which rank features by their global importance and show both the
magnitude and direction of their effect on cluster membership. This interpretability framework
identifies the most influential navigational features across all cadets and supports actionable,
individualized feedback by revealing which specific behaviors most contributed to a segment’s
cluster assignment. The feedback can be traced to specific segment in the session and therefore can
be traced back to the exact location of occurrence. As a result, SHAP bridges the gap between
complex machine learning outputs and human-understandable instructional insights.

Cluster -1 Cluster 0

v_speed_mean pitch_vel_mean

roll_mean v_speed_mean

roll_mean

pitch_vel_mean

rpm_mid_mean rpm_mid_mean

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
mean(|SHAP value|) mean(|SHAP value|)

Cluster 1 Cluster 2

roll_mean rpm_mid_mean

v_speed_mean v_speed_mean

roll_mean

rpm_mid_mean

pitch_vel_mean pitch_vel_mean

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
mean(|SHAP value|) mean(|SHAP value|)

Figure 9 — Illustration of SHAP values for each identified cluster

The SHAP value analysis for each cluster — corresponding to distinct patterns of
navigational performance, including noise/outlier sessions — reveals the features most influential in
determining cluster assignments.

For sessions identified as outliers or noise (Cluster -1) and for sessions in Cluster 0, the
mean vertical speed (v_speed_mean), average roll angle (roll_mean), followed by average rate of
change of pitch (pitch_vel_mean) and average mid-propeller RPM (rpm_mid_mean) are the top
contributors to the cluster attribution. This combination of elevated lateral motion and vessel roll
suggests instability — possibly due to corrections and rude steering. The lower value of propeller
PRM in the Cluster 0 may indicate attempt to maneuver at lower speeds.

For Cluster 1, the mean roll velocity (roll_mean), mean longitudinal speed (v_speed_mean),
and average propeller RPM (rpm_mid_mean) are defining features. This perhaps could indicate
stable vessel motion where cadets exhibit stable navigation with consistent lateral motion and
propulsion given relatively moderate SHAP values across features and the fact that this corresponds
to the largest cluster identified.

Segments in Cluster 2 show high importance of average propeller RPM (rpm_mid_mean),
suggesting that cadets in this group rely heavily on propulsion power for navigation. This behavior
may be required in certain contexts but might also lead to sharp or energy-inefficient maneuvers.

While those suggestions offer global patterns of behavior, the system can trace back the
segment classified as certain cluster and provide detailed view on what was happening with the
vessel and navigator at that time interval. This should greatly assist and quicken instructor’s ability
to provide actionable feedback to cadets.

Conclusion. This study has demonstrated the feasibility and utility of applying unsupervised
machine learning and explainable Al techniques to maritime simulator data for the automated
assessment of cadet navigational performance. By engineering interpretable features from raw time-
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series telemetry and leveraging advanced clustering algorithms such as HDBSCAN, the proposed
pipeline effectively identifies meaningful patterns in cadet behaviors during simulation exercises.
The integration of surrogate models and SHAP-based interpretability provides actionable feedback,
enabling instructors to tailor training interventions to address specific performance gaps and
reinforce safe navigational strategies. Notably, the results underline the pivotal role of key
features—such as roll velocity, propeller RPM, and sideway velocity — in distinguishing between
stable, dynamic, and anomalous navigational styles. These findings support the transition from
subjective, instructor-driven assessments toward a more objective, data-driven approach in maritime
education, with the potential to reduce human error and enhance overall maritime safety.

Prospects for further research. Despite promising results, several avenues remain open for
future research. First, expanding the dataset to include a larger and more diverse sample of cadets
and navigational scenarios will strengthen the generalizability and robustness of the findings. Future
work may also focus on real-time deployment of the feedback system, enabling adaptive, in-situ
guidance during simulation or actual vessel operation. Moreover, integrating the proposed method
with fuzzy logic-based risk assessment frameworks may further enhance the system’s capability to
support decision-making under uncertainty. Finally, collaboration with maritime training
institutions and stakeholders will be essential for validating the practical impact of automated
feedback tools and for driving the evolution of competency-based, individualized maritime
education.
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Kouy6eii Il., Hocos II. BU3HAUEHHS BIUJIMBY ®AKTOPY OIIEPATOPIB-CYJHOBO/IIIB
3ACOBAMM HABITALIITHOI'O TPEHAXEPY

YV mipy ycxknaowemns mopcokux onepayiu 3pocmae nompeba 'y 8npo8aodiCeHHi 00'ekmueHux ma
MaAcumado8aHux Memooié OYIHIOBAHH KOMNEMEHMHOCMI MOPSKIE, W0 6UX00AMb 3a MedCl mMpaouyitiHux
IHCIMPYKMOPCbKUX Ni0X00i8. Y ybomy 00cniodxceHHi npedcmagieHo KOMNIEKCHy, 0a308aHy HA OAHUX CUCEMY
aumanizy pobomu Kypcawmis y mpeHadiCepHUx 6npaeax, sKa SUKOPUCMOBYE CYHACHI Memoou Oe3 HAOYHO20
HABUAHHA MA NOACHIOBAHO20 WMY4HO20 iHmenekmy (Al). [ns ananizy euxopucmogysaiucs 6a2amogumipHi
4acosi psou 3 HAGIAYIUHUX CUMYJAYIL, WO OXONII0ImMb OUHAMIKY CYOHA, Oii eKkinadxcy ma napamempu
HABKONUWHBO020 Ccepedosuuya 3a 0ecsimrkamu piznux osHax. byno peanizoeano pemenvnutl eman nonepeonbor
00pobKU Oanux, KUL NOEOHYE A2pecy8anHs CIMAMUCMUYHUX O3HAK MA YCYHEHHs HAOIUWKOB0I iHopmayii 3a
donomoeor koeghiyienma kopenayii Ilipcona ma e3aemnoi ingopmayii. Ile 0Oozeonuno cpopmysamu
KOMRAKMHUL, ane iHQOpMamusHull HadIp Xapakmepucmuk, aKull 6i000padicae K Kepyroui eniueu, max i
Hasieayiuni cmanu ma pyx cyona. Kooicny cecito cumynayii 0yno 3ako008aHO y eueiadi eekmopd, wo Qikcye
cepeOHi 3HAYeHHs ma 8apiamueHiCmb napamempie NPomA20M BUKOHAHHA énpasu. [na kiacmepuzayii 06y10
obpano ancopumm HDBSCAN, axuili ocodaueo epekmusHuii 0s 8UAGIEHH 2PN 13 PI3HOW WIIbHICMIO md
ABMOMAMUYHO BUOINAE AHOMANbHI 8UNAOKU, WO KPUMUYHO BAHMCIUBO O/ OYIHKU NIO20mOeKU. 3HatioeHi
Kaacmepu i3yanizyeanu 3a 0onomo2oio T-poznodinenoeo eéxnadennss cmoxacmuunoi 6nusvrkocmi (t-SNE), wo
003601UNO IHMEPNpemyeamu namepHu il Kypcaumis. [l nosichenHs: 0cobIueocmetl KodNCHOI epynu 0yio
Hasueno ainiuny SVM-moodens, a memoo SHAP donomie npoananizyeamu, ski came O03HAKU 6NAUBAIOMb HA
piuwtennsi mooeni. OCHOGHI pe3yibmamu NOKA3AAU, WO KIACmepu 8i0Nosioaroms PISHUM CMUISM HAgieayii:
cmaobinbhi, 00epedxcHi  nioxoou  GIOPI3HAIMbCA — 6I0  OUHAMIYHUX YU  PUSUKOBAHUX 34 MAKUMU
XApPakmepucmuKamu, sik WeUOKicms Kpery, Kymosuil pyx (yaw_rate) ma obepmu osueyrna. Cecii, 6ioHeceHi 00
aHOManil, 3A368UYAll XAPAKMEPUIVIOMbCA  PISKUMU MAHeBPAMU YU HEeCMIUKUM KePY8AHHAM, WO MOodice
C8I0UUMU NPO HAABHICMb Npo2anuH y Hasuukax. Inmepnpemosani SHAP-3nauenus nepemeoproroms CKIAOHI
BUCHOBKU MO0 HA 3pO3YMINL Oisl IHCIPYKIMOPI8 peKOMeHOayil, 0aryu MONCIUBICIb AOPeCHO NPAYI8amu 3
HeOoliKamMu KOXHCHO20 Kypcanma. 3anpononosanutl nioxio Moodce cmamiu npo30poro mda Macuimado8aHow
AnbIMepHAmugor Cyo eKMUBHOMY OYIHIOBAHHIO Y MOPCHKIU 0C8imi, 3 pedalbHUMU nepcnekmusamu O
niosuujenHs 6esneku ma nepcouanizayii Hasyauua. Cucmema NOKA3YE BUCOKUL NOMeHYian iHmezpayii &
npakmuine cepedosuuje nid20mosKu Kaopie ma nooaibuio20 po3GUMKY 3 POZUUPEHHIM MACUEY OOCMYNHUX
OaHuX.

Kniouoei cnosa: 6o0nuti mpancnopm,; excniyamayis 3aco6ie¢ mpancnopmy, 6e3nexa cyoHoniascmed, haxkmop
JHOOUHU, ABMOMAMU3AYISA, PUSUK, THMENeKMYAlbHI CUCmemMu, [HOOPMayitiHi naneni aHAlimuKy HAGYAHHS
(I[IAH).

© Kochubei P., Nosov P.

Crartio npuifasTo 10 penakmii 16.06.2025

170

o pyopuku exnoueno cmammi 3a memamuunoro cnpamosanicmio « Tpancnopmui mexuonociiy



